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NOISE-LIKE SIGNALS AND THEIR DETECTION BY CORRELATION*

ABSTRACT

Communication systems, in which a noise-like
signal is used as an information carrier and cross-
correlation at the receiver is used for detection, are
investigated The probability of error in the recep-
tion of signals by such systems (called NOMAC sys-
tems) is given as a function of input signal-to-noise
ratio, input-to-output bandwidth ratio, and the num-
ber of possible signals. The effect of having a noisy
version of the signal with which the input signal is
cross-correlated is included, and the effect of using
an arbitrary threshold value of the output as a crite-
rion of detection is shown to result in a loss of avail-
able channel capacity, and correspondingly higher
probability of error. Proposed practical systems
employing NOMAC principles are described in some
detail, along with the experimental system that has
been constructed and tested. The experimental re-
sults are shown to agree with the theory.

*This report is identical with a thesis cf the same title submitted in
eartial fulfillment of the requirements for the Degree of Doctor of
Science in the Department of Electrical Engineering at the Massachu-
setts Institute of Technology, Z6 May 1952.
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CHAPTER I

THE BASIC COMMUNICATION SYSTEM

A. Elements of Communication Theory

The theory of information has occupied a position of growing importance in commu-

nication engineering recently. The main purpose of the theory is to provide means for a quan-

titative analysis of communication systems. How this purpose is achieved is illustrated by the

following discussion of a basic communication system.

The communication process starts with the selection at the transmitter of one mem-

ber of a set of possible messages, which in the idealized model take the form of symbols. (In

electrical communication systems, a "symbol" is usually a voltage or current waveform.) The

selection is made at the direction of the originator, and the selected symbol is transformed in-

to a form app:-,.priate for transmission in the channel. The receiver function is to indicate

which of the set of possible symbols was selected; if this is done correctly, the commuriication

link has performed its task perfectly (see F:4 1.1).

Set ofDeor
Possible

Messages (Receiver)

(Symbols)

.ncodr - Disturbed

EncoderChannel

(Transmitter)

-I
Intelligence User of

Input Intelligence

(Originator) (Destination)

Fig. i. 1. Block diagram of general communication system.

The interpretation of tme operation of a communication system as a process of

selection of one from a number of possibilities was made by Nyquist in 1924. 17*This inter-

pretation was later used by Hartley in a 1928 paper 1 2 in which the logarithm of the number of

possible symbols is suggested as a quantitative measure of the information conveyed by the

selection.

Th2 introduction of statistical concepts in information theory led to a more gen-

eral measure of information in terms of the logarithm of the reciprocal of the probability that

*Refer to numbered references at end of report.
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a symbol of the set should be selected. (Obviously, where the set consists of equally probable

symbols, this measure becomes identical with that suggested by Hartley.) An account of this

phase of information theory is contained in the literature, and the reader is particularly dlirected

to the writings of Wiener. 
5 Shannon.

2 Z and Fano.
5

If noise is introduced in the channel, it has the effect of distorting the received

signal in such a way that the distortion might have resulted from more than one of the possible

symbols at the transmitter. so far as the receiver is concerned. The receiver, therefore, can-

not be certain about what was transmitted because of the uncertainty connected with the disturb-

ing noise, and thus is inherently subject to errors in the decoding process.

From the point of view of information theory, the information about the transmitted

symbol at the input of the receiver can be expressed in terms ofl the change in the probabilities

of the possible symbols upon receipt of a signal. Thus, where the set X represents the pos-

sible symbols at the transmitter and Z represents the signal at the input of the receiver when

one of the X's is selected and transmitted, the information gain associated with each of the

symbols is given by

1(X/Z) log PX/Z ( 1- )

In Eq.( I- -I, P(X) is the probability of the symbol while P(X/Z) is the conditional probability

of the symbol following the reception of Z. The information received about the transmitted

symbol is the average of that shown in Eq.(- 1)-, averaged over all X- that could have resulted

in the particular Z received, namely,

I(Z)I = P(X,/Z)og Px/Z) 1-2)
=o P(X)

Note that, in the absence of interfering noise, one of the P(X/Z) would be unity, all others,

zero. Then Eq.(l-2) reduces to the measure given in the earlier paragraph, i.e., log I/P(X),

which measures the information associated with the selection made at the transmitter, and thus

is the measure of the transmitted information.

The point of view of the discussion of the preceding paragrapln is that of Woodward

and Davies.26 They concluded that the best a decoder or receiver can possibly do is to compute

the conditional probabilities of the transmitted symbols when a signal appears at the receiver

input. To demonstrate how this might hie done. Wood%& ard and Lavies considered the case where

the disturbance in thd !hannel'is an independent additive Gaussian white noise. They show that

the conditional probabilities are given by a decreasing function of the mean square difference

between the received signal and the waveform representing the symbol for which the probabil-

ity is being computed. Thus. for the symbol Xk ,

N [ fT [Z (t) - Xk~t)12 dt

P(Xk/Z) = B p(X exp N (1-3)

Here B is a normalizing constant and N is the noise power per cycle of bandwidth. If the

X's are equally likely, p(Xk) is a constant for all k. and P(Xk /Z) is a function only of the in-

tegral of the squared difference [Z (t) - Xk(t)] '
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if a receiver performs the computation of the conditional probabilities and makes

these quantities available to the user of the information, it has relayed all the received information

to the output circuit. An examination of Eq.(! -2) reveals that on the average I(Z) is less than

the transmitted information when noise is present. The information lost is termed equivocation.

It is also apparent that a receiver that computes the conditional probabilities in the

manner described by Eq.( 1-3) performs a comparison of the received signal with each of the

possible transmitted symbols. It is correctly implied that cnp'es of the possible symbols must

be made available at the receiver for the comparison.

One of the problems in communication theory has been how to select the optimum

set of signals into which the transmitter encodes the information so as to lead to a minimum

amount of eqivocation under the condition of fixed rate of transmitted information. This prob-

lem has not been solved in general. It has been shown, however, that sets do exist which can

lead to ratios of equivocation to transmitted irformation that are arbitrarily small, if sufficient

delay is allowed in the communication process. This is true provided the rate of transmission

of information does not exceed the maximum rate at which information may be received through

any particular communication channel.

This fact was stated as an existence theorem and proved by Shannon. l in a par-

ticular form that is applicable to continuously varying time functions disturbed by white Gaussian

noise. Shannon derived the maximum rate, called channel capacity, which is given by

C = W log(1 t5) bits/sec (1-4)

In this expression, W is the (ideal rectangular) bandwidth occupied by the time-varying signal,

S is the component of received signal power due to the transmitted signal. and N is the noise

component of the received signal power. An important condition leading to the derivation of

Eq.( 1-4) is that the average transmitted power is limited.

In his derivation Shannon noted that each of the waveforms of the set of signals

that would lead to a full utilization of the system capacity with arbitrarily low equivocation

would be in all respects similar to white Gaussian noise. Although unable to determine a par-

ticular optimum set of noise-like waveforms, he was able to show that the average performance

of all possible noise waveforms (having the same bandwidth and average power) was ideal, in

that the fraction of transmitted information lost could be held arbitrarily low at information

rates less than the channel capacity. provided sufficient delay were allowed. This performance

could be obtained with a receiver that makes a decision about what was transmitted based on the

minimum mean square difference between the received signal and each of the possible symbols.

A practical and fortunate corollary is that random segments of Gaussian white noise can be used

for symbols, and that these segments of noise can be taken from currently generated waveforms

from a continuous noise source.

Here a new concept of the role played by the decoder or receiver has been intro-

duced. It has been stated that the best a receiver can do when noise is present is to compute

the conditional probabilities of the transmitted symbols following reception of a signal. However.

in a practical case, the receiver is usually called upon to indicate which of the set of possible

symbols was transmitted. The indication is performed after a decision by the receiver of which

3

UNCLASSIFIED



UNCLASSIFIED

symbol should be indicated. Because of the interfering noise, the receiver cannot decide with

certainty, but must choose a symbol that has at least a high probability of having been trans-

mitted. In a typical case. the receiver might indicate the most probable of the transmitted sym-

bols (as Shannon's receiver does).

The indication made by the receiver is, of course, sub-ect to errors. The ratio

of the number of erroneous decisions to total decisions is termed the probability of error. and

is closely related to the fraction of transmitted information that becomes lost - the per-unit

equivocation.

When the receiver makes a decision about what is transmitted, and only this deci-

sion is relayed to the destination, the user of the information knows only that the receiver has

selected one of the set of possibilities in accordance with some detection criterion. The infor-

mation about the conditional probabilities is otherwise discarded, and the over-all per-unit

equivocation is thereby increased.

While the per-unit equivocation is the proper criterion for the evaluation of the

efficiency with which a communication link performs its assigned task, the probability of error

is often used instead. The relation between this relative frequency of erroneous decisions and

the per-unit equivocation when the user of information gets orly the decisions of the decoding

device (receiver) is given in Appendix 1. It is shown that the per-unit equivocation is a decreas-

ing function of decreasing probability of error, which justifies the use of the latter in evaluating

the performance of the link.

B. The Mathematical Model
12

The geometrical model employed by Shannon. and which was subsequently used

by Rice, was also adopted for the theoretical work in this paper. It is useful in relating the

oncepts and results found in this research to those found by these two earlier authors; it is

outlined briefly here.

In its simplest form, it is assumed that the symbols used are segments of a time

function which has (I) a Gaussian amplitude distribution, (2) a flat frequency distribution to W

cycles per second with no component frequencies higher than W cycles per second, and (3) an

amplitude variance S (which becomes the average power for electrical signals). Each of these

segments lasts just T seconds.

It is obvious that, because of the abrupt start and stop of the segments as described,

frequency components outside the bandwidth W cannot be avoided. This suggests the character-

ization of each of the segments in terms of the Fourier coefficients in the manner given by

X TW X I  
2.7i TW X-

X(t) + cos -- t S S sin t
JZ2-TW i=l IT-W T 1 j -w T(15

*For a complete discussion of this relation, see R. M. Fano's printed lecture notes of yearly

course, 6.574, Statistical Theory of Information. M. I. T.

4
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Here

X 1 fT
T 0 T X(t) dt (I -Sa)

X 2 fT 
S - - X(t) cos -4-tdt I(- 5b)

Xj T

S X (t) sin 2- tdt . (1-5c)
iTw T 0  T

The X. or Xj represent the Fourier coefficients, and X(t) is the segment of noise represented.

The constant I/, TW is introduced arbitrarily to control the relative magnitudes of the X's.

It can be shown that, for the time function as described, the X's are numbers drawn from a

normal distribution with variance equal to the power S. By setting an upper limit to the fre-

quencies for which X i are defined, the higher-frequency components introduced by the starting

and stopping of a segment are neglected. As developed, the time functions described will be

low-pass functions. However, the description of band-pass functions can be achieved analogously

by running the index of summation from i = TW 1 to i = TWa where the frequency band between

VV and W is the part of the spectrum occupied by the function.

Another description is necessary to support the material presented in Chapter VIII.

Mthough it is somewhat easier to visualize, it is limited in application to low-pass functions.

It is also useful in interpreting the vector model introduced later in this chapter. Here, each

segn-ci.t is represented by amplitude samples spaced each 1/2W seconds along the waveform.

Thus. there are 2TW samples for each symbol represented by a finito-duration noise-like wave-

form. Because the time function has a flat rectangular spectrum, it can easily be shown that

the amplitude samples are incoherent; and, because they are from a Gaussian process, they

are in fact independent. These samples can thus be used with a sequence of orthonormal func-

tions of the form sin t/t to reconstruct an approximation to the original waveform. One takes

n sin ZnW (t - t i )

X(t) X- 1 (1-6)i= 21tw (t - t i)

in which t i i/2W. T-e X(ti resulting from this summation not only differs from the true value

in the intersample time regions, but differs from zero outside the duration T. It is, however.

a least- inean-square approximation to the true value, as good as can be done with the ZTW

specifying numbers. It is in that respect entirely equivalent to the representation in terms of

Fourier coefficients. Like the Fourier coefficients, it is apparent that the X's in Eq.(1-6) are

also numbers chosen from a normal distribution of variance S.

The n = 2T\V numbers thus chosen to represent each symbol are ordered and taken

as coordinates of a point in Euclidean n-space. Each symbol waveform corresponds uniquely to

a point in the space, such that there are K + I of the points designated by X0 , X. .. X k  Con-

nerting each point and the origin are K - I vectors denoted by X. . Either a point or a vector

may be used to represent the message waveform to which it corresponds.
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It is evident that any point in n-space specifies, a waveform of the same bandwidth

and time duration as the possible message waveforms. The sum of two waveforms, by summing

coordinates, becomes the vector :sum of the two waveform vectors.

One of these vectors (arbitrarily X 0 ) is selected and transmitted. In the channel,

an independent white Gaussian noise, 1, is added. The received signal is by linear superposi-

tion the vector sum (see Fig. 1-2) of 50 and Y and is designated 2. 'The receiver used by Shannon

and Rice has available copies of the set of vectors Xk and chooses., as the one most probably

sent, the one whose terminal point is closest to point Z. Here it is evident that the mean square

difference between the received signal and each member of the set of possible signals is equal

to the squared distance from the point to each point Xk , aside from a constant factor, I/n. (The

term "mean" in mean square difference is used to connote the average over the duration T of

the difference JZ,(t) - X (t)] .)

Since the interfering noise has been assumed

to be white Gaussian, the Woodward and Davies treat-

Yment giving the conditional probabilities, in terms of the

mean square difference is valid. Therefore, it follows

- that the conditional probability of the k th symbol is a

monotonically decreasing function of increasing distance
0  of the point Xk from Z.

The probability of error for a communication

system. choosing as the transmitted waveform the one

Fig. 1.2 Vector model of mes- that is the minimum distance from the received signal

sages, noise, and received signal. waveform (in terms of the geometrical model), was the

subject of Rice's paper. When modified for small sig-

nal-to-noisle ratios, in terms of the channel capacity

C and information rate at the source H = liog 2 (K + 1), the probability of error as obtained in

Appendix III is

P (error) "- ____1_ exp -CIT(1- H) (-7)

This result is valid for large n, for large number of possible messages, K + 1, and for a sig-

nal-to-noise ratio sufficiently small that the approximation nS/N = C'T is valid. The prime

indicates C' is in logarithmic units. In bits, C is equal to [logzeIC'.

It is evident from Eq.(1-7) that the probability of error and thi:s the per-unit equiv-

ocation may be made arbitrarily small with increasing delay T, provided only that H/C, the

ratio of transmitted rate of information to system capacity, does not exceed unity.

Rice did not give Eq.(1-7) explicitly in his paper, but gave an e.xpression for the

probability of no error, valid for large n and large K, but for all signal-ta-noise ratios. He

showed that his expression approaches unity under the conditions above. Iiowever, his expres-

sion was given along with error terms, which decreased with increasing r, and K but which ex-

ceeded the difference between his expression and unity. Thus, a probability-of-error expres-

sion could not be obtained directly from his results, but an intermediate result had to be taken

and worked into the form of Eq.(1 --7) as is shown in Appendix Ill. The fact that the expression

6
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given here is limited to cases where the signal-to-noise ratio at the receiver is small is not a

serious disadvantage, as will be seen later.

It was mentioned earlier that a receiver may use other criteria in deciding, after

a signal has been received, which one of the possible waveforms was transmitted. When such

criteria are proposed, they must be evaluated in terms of the probability of error that accom-

panies the use of that criteria. Of course, other prevailing conditions, such as the method of

coding and type of interference, must be given due consideration. In the class of idealized sys-

tems in which t'e possible message waveforms are random samples of white Gaussian noise and

the interfering noise is a!so Gaussian the rate of errors can be compared with the result ob-
tained by Rice. Rice's results may be regarded as expressing the performance of an ideal sys-

tem in that his receiver will always select the most probable transmitted symbol (under the con-

ditions of additive Gaussian noise and equal symbol probabilities).

7
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CHAPTER II

CORRELATION DETECTION CRITERIA

Another criterion of detection that is of primary interest in this paper can be ob-

tained as follows. Where the various possible transmitter symbols are given by waveforms

Xk(t) , 0< t < T, and the received signal is Z (t)= X (t) + Y (t) (where Y (t) is additive noise).

the minimum mean square d.fference (msd) is given by the minimum of

msd =yJ [Z (t) - Xk (t]dt ,(2-i)

f 1T [Z (t) 2 + X (t) 2  - (t) Xk tM dt -(2-2)

0

If it is assumed that

fo Xk (t) dt

is a constant for all k, a minimum of Eq. (2-2) is a maximum of the term

STZM X k t) dt

This may be recognized as the "correlation coefficient" of Xk and Z, and a receiver that com-

putes this value for subsequent use in deciding what was sent is called a correlation detector.

Correlation techniques were introduced to communication engineers largely by

N. Wiener, and the techniques have been improved and implemented by Lee 16 and others. 15

The cross-correlation function of two stationary random functions of time is given by

I T
12( = 1im - fl1(t) f?(t ' T) dt 12-3)

T-co T

When f2 (t) is identically f I(t), this becomes the autocorrelation function. The relation between

autocorrelation functions and power spectra 2 4 makes correlation techniques an invaluable aid in

the study of random functions.

The so-called "short-time cross-correlation function" has been studied 6 and is

given by

(T) -J f I (t) f (t + "T) dt (2-4)

which is seen to be of the form of the defining expression for correlation coefficients. A gener-

a.lized form of Eq. (2-4) in which the product f(t)f,(t + -) is filtered rather than mathematically

integrated is

0(t, T) tJ h (t - cr) f 1 (o) f2 (a + -r)da ( 2-5)

9
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Here h (t) is the impulse response function of the filter and is sometimes variously called the

integrating function, scanning function, or window function.A4

The use of correlation devices operating as practical correlation detectors in the

manner described mathematically by Eq.(2-5) has brought about the adoption of detection cri-

teria based on correlation outputs in their own right. An advantage of such correlation devices

is that they are not subject to an important limitation on a device computing the mean square

difference. The latter device must know the precise value of the component of received signal

power due to the transmitted waveform as well as the waveform shapes themselves- However,

the former device need know the waveforms only within the freedom allowed by an arbitrary

constant multiplier-

In reference to Eq.(Z-Z), it is apparent that if the integrals

f
T X k it) 2I

2k it

(proportional to the signal energy) are not equal for all k, the criterion of maximum short-time

correlation is not equivalent to that of minimum mean square difference. To illustrate this, the

geometrical model is consulted.

The additive properties of the vector representations of the time functions were

shown to follow from linear superposition. The orthogonality of the components leads to equiv-

alent vector interpretations of the average product or correlation coefficient. For example.

dealing only with the cosine terms of the representation given in Eq.(1-5),

TTTW X_ Z
1f T tzd jT 2'cs-P- k ZwkX (t) Z (t)dt -E Cos T t M cos -- tdt + (other terms), (2-5)T ~ T]W/ T xT

TW TW X 1 2, d k (ri ).(S)Zd k=l TW TJ cos-y-t cos tdt + ( 5a)

when the order of integration and summation is interchanged. But

1_ T li 2k I k (2-6)

T-j cos-T- t cos -- dt = T i

where 6k is the Kronecker delta and 6i  1: 5-k 0, i - k.

Also, the same behavior governs the sine terms, and all the cross terms are zero. Finally,
T TW X.Z.

X(t) Z(t)dt = 11 (2-7)

i=lTW

(The summation on the right is obtained approximately when the alternate representation of the

symbol waveforms in terms of 2TW time samples is employed.)

The ,-X.Z. is obviously the form of the dot or scalar product of the vectors X and

Z. It is related to the distance between X and Z by

Xk.Z 1 2 ;X Xk L 2k 'Z IZI Il -_2 (2-8)
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where Dk is used to denote the distance corresponding to the kth vector- Again, it is evident

that if all IXk are equal, the minimum distance corresponds to the maximum dot product. As

is shown in Appendix II, however, the magnitudes of the vectors Xk are not all equal when they

are segments taken from a random Gaussian noise waveform. Where the signal power S is large

compared to the noise power N, a case such as that shown in Fig. Z-I always has finite probabil-

ity. Here, since 141 is constant for all k, the correlation

OK - ,is that constant times the projection of the vector Xk onto
the vector Z. It is immediately evident that a vector might

occur with magnitude sufficient that, although the distance

Dk>D the projection of X will exceed that of X on Z_
- z k 0' k 0 -

XK When the ratio of signal power S to noise power

N becomes quite small, the term IXk/Z? itself becomes

small. Then the contribution of the fluctuations of the mag-

nitude of Xk to the values of the dot products is to the value
Fig. 2.l. Vector mag- of X

nitude contributions of error. k Z approximately as the signal amplitude is to the

noise amplitude. Thus, for small signal-to-noise ratios,
the equivalence of the criteria of maximum dot product and

minimum distance is again approached, even though the energies of each Xk are not equal. As

is seen later (for all S/N), as the system dimension n is increased, the fluctuations of IXki2

decrease percentagewise, further establishing the equivalence of these two criteria.

The fact that the criterion of maximum correlation is an optimum one for small

signal-to-noise ratios, p = S/N, is not of mere academic interest. It is when p is small that

the communication of information becomes most difficult. Here the channel capacities for chan-

nels of bandwidth conventionally associated with communications become low enough that the in-

formation rates of even relatively low-rate systems, such as telegraph and teletype, become a

significant fraction of the channel capacity.

Furthermore, there are two features of military significance that are inherently re-

lated to low signal-to-noise ratios.

One of these is the possibility of communicating with received signal levels below the

receiver and antenna noise at the receiver location. In the past, other systems have been pro-

posed which provide communication, although the average signal power is less than the noise

power at the receiver input. However, these systems, such as pulse-position or pulse-code

systems, feature bursts of power for relatively short periods of time which are above the noise

level. The average power is less than the noise power by virtue of its being averaged over

larger periods of time. In the proposed systems, the signal power can be less than the noise

power at all times. If unfriendly search receivers are limited to a comparable received power,

it is highly unlikely that such receivers will be aware of the presence of the signal "on the air,"

unless, of course, the unfriendly receiver performs the same operation of correlation as the

friendly one-

Another promising feature deals with resistance to jamming. As Fano has shown,7

the signal-to-noise ratio at the output of a correlation detector is given ideally by the ratio of

total signal energy to noise power per cycle. This suggests the jamming power may be forced

11
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down to a low value compared with the signal energy merely by spreading the signal energy over

a sufficiently wide bandwidth. This spread causes the jamming power to be effectively averaged

over the bandwidth in such a way that the jamming power per cycle is small.

In the next chapter, a specific description of the systems suggested by the properties

of this type of noise communication and correlation is accompanied by a more complete discus-

sion of what services these systems are expected to perform and their advantage in performing

them.

S R

SECRET



SECRET

CHAPTER III

DESCRIPTION OF THE FUNDAMENTAL NOMAC SYSTEM

In view of the advantages that schemes of communication using noise-hke signals

and correlation detectors appear to possess, an extensive investigation into their properties has

been conducted. The code word NOMAC (coined from Noise Modulation and Correlation) has

been suggested for use in referring to such systems.

NOMAC systems, generally speaking, trade bandwidth for the ability to operate at

low signal-to-noise ratios. In view of the present day emphasis on conservation of bandwidth.

these systems should not find application where interference is slight or negligible. However.

in certain military applications the possibility of maintaining communications secure from in-

tercept or reliable in the face of enemy jamming offsets any disadvantage that may be connected

with the use of wide bandwidths.

The block diagram of a fundamental NOMAC system is shown in Fig. 3.1. The set of

possible symbols which take the form of finite duration segments of Gaussian noise is shown at

the transmitter. The transmitter selects one of these waveforms Xk (t) and propagates it

through the channel in which the Gaussian interfering noise Y (t) is added. At the receiver,

copies of the K + 1 waveforms are available to use in K - 1 correlation detectors in which the

received signal is compared with each of the copies representing possible symbols.

Symbol

X ° (t)

SymbolAve raging

X 1 (t) -Mult-. Filter

Channel 
tNoise to

Decision
Circuit

Symbol
~~AveragingW K

XK(t }  Filter W

TRANSMITTER CHANNEL CORRELATION DETECTOR

Fig. 3. 1. Block diagram of typical NOMAC system.
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A problem of major importance in the design of NOMAC systems is that of deliver-

ing the copies of the possible waveforms to the receiver so that correlation may be performed.

The attempts at a solution of this problem divide NOMAC !systems into two categories. one in

which the possible symbol wavieforms are stored at the receiver, and another in which the wave-

forms reach the receiver as reference signals through one or more auxiliary channels.

The first category, called the stored-signal system, presents rather severe require-

ments of time synchronization, in order that the correlation coefficient calculated will corre-

spond to the T = o point of the autocorrelation function. One advantage of this system is that.

while the segments may be chosen at random from white Gaussian noise, they become a known

set once the choice is made. Thus, a scale factor may be employed to make each of the symbol

energies equal, which establishes the exact equivalence of the criteria of maximum correlation

and of minimum mean square difference.

In the second category, the synchronization problem is largely eliminated, but noise

is generally present in the auxiliary channels also. Here the signals may be randomly selected

from one or more noise sources that are currently generating the noise. Obviously, these sym-

bol waveforms will be random in all respects.

In Fig. 3.2, curves of the signal-to-noise ratio in the output of an ideal correlation

detector as a function of the input signal-to-noise ratio and n = ZTW are shown for the two cat-

egories of NOMAC system. It will be shown subsequently that, when filtering is used for the in-

tegration in the correlation process, n is in reality the ratio of the input-signal bandwidth W

to the noise bandwidth of the integrating filter. In the figure, the signal-to-noise ratio p, or

(S/N) c, is assumed the same for both intelligence and auxiliary channel or channels. From the

figure, if a required output ratio and n are known, one may determine the permissible input

signal-to-noise ratio. Conversely, if a desired input signal-to-noise ratio and required output

signal-to-noise ratio are specified, the necessary bandwidth ratio is easily obtained for either

type of system.

SINGLE -CHANNEL/,' J
SYSTEM

/" ,
0S 'SEC U

TWO-CHANNEL SYSTEM N -HO

/ rRANSMITTE .N).
1

'(A~ 411
/.0 L"

0,01 01 1 10 '100

Fig. 3.2. Signal-to-noise improvement Fig. 3.3. Secure region
in correlation vectors. of communication.
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To demonstrate the secure communication properties of such a system, suppose

that the NOMAC system as designed will operate satisfactorily at an input signal-to-noise ratio

(S/N) min' while an unfriendly search receiver can detect the radiation only at signal-to-noise

ratios greater than a larger value (S/N) max. Then, as is seen in Fig. 3.3, there is a "secure"

region or annular ring about the transmitter in which communication might be carried out by

friendly parties without the knowledge by unfriendly forces in that region.

An inverse line of reasoning would demonstrate that an unfriendly jamming trans-

mitter might be believed to be effective against the assumed transmitted power as determined

by the power received at the jamming site to some range R . On the other hand. communica-

tion would actually be maintained to the inner radius R i , and the "secure region" now becomes

a marginal communication area which might co zeivably prove quite embarrassing to the un-

friendly forces.

As presented in F:1  I 'he -!.damen, -l NOMAC system is idealized to facilitate

the theoretical investigation. The typc- of decision circuit is not specified in order to permit

some latitude in the interpretat, n an. :.plication of the figure. In the following material, two

types ot decision circuit are evaluated in detail. The first of these is one that establishes the

criterion of maximum correlation in its selection of which of the symbols X k was transmitted.

The second decision circuit (and the easiest t. nstruct in practice) sets as a criterion the ex-

ceeding of a fixed threshold. Called threshold detection, it indicates a signal as having been

transmitted whenever the correlator output corresponding to that signal exceeds the threshold

value.

It is not intended to convey the impression that only systems designed precisely as

indicated by the block diagram are inci-ided in the analysis presented. Modifications of the anal-

ysis given here for discrete syste-as, along with the work appearing elsewhere concerning the

improvement of sirr-al-to-noise ratio in correlation detectors, 7 can be made to extend the cover-

age to a varied .ass of similar systems. For example, one might use a single random-noise

source to obt.ain the different symbols merely by using delayed versions of the initial noise for

the sources of the currently chosen segments. The delay increments need only be great enough

to correspond to values of -r of the autocorrelation function of the noise for which the correla-

tion function is essentially zero.

Other versions of NOMAC systems may include those in which the noise-like wave-

form is modulated in the same manner in which a sinusoidal carrier is modulated in convention-

al communication systems. For example, the transmitted random waveform might be varied

in amplitude, frequency band of transmission, or relative time of transmission. These varia-

tions correspond to conventional AM, FM and PPM, for example. Obviously, combinations of

any of these modulations are possible just as with sinusoidal carriers. The experimental mod-

el shown in block diagram in Appendix VII, Fig. 3 is essentially an amplitude-modulated version

of a NOMAC system, and its theoretical probability-of-error treatment corresponds to the sig-

nal-to-noise improvement type of analysis that would be used for an AM system.
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CHAPTER IV

THE THEORETICAL STUDY OF PROBABILITY OF ERROR

A. The Criterion of Maximum Correation

When the receiver of a NOMAC system makes its decision about which of the signals

XK (t) was transmitted - based on the criterion of max.mum correlation output - the rate of mak-

ing errors has been obtained. The result, which is valid for large n, and for signal-to-noise

ratio p, such that the product np is larger than about 2, is given by the approximation

P (error) K erf n(p
2P -)P

where

erf Q r co exp [- {tfldt-

For still larger values of np. but only for small signal-to-noise ratios, the expression agrees

with that of Rice, namely,

P (error) - (4-1a)

Here, p << I, so that np A C'T: and K>> I, so that InK A InK - 1 = H'T.

These results were obtained using the geometrical model in the following manner.

First. there are K 4 1 independent message vectors which are represented by 0 , Xl ....

Appendix II derives the probability density distribution for the magnitude of these vectors, a

type familiar in the study of statistics For the message vector R, where S is the average

signal power, it is given as follows:

X) ex( (4-2)

As is shown in Appendix II, this distribution has an average value of
n+ I.

nf
17 (-T)

and a variance of not more than 14S. The average value is \riS within an error of one part in

each 4n parts.

Here it must be pointed out that approximations are made throughout the paper, pri-

marily because the representation of the actual waveforms as having a Gaussian probability
14

density distribution is only approximately correct, and it may be considerably in error along

the "skirts" of the distribution curve. Except where otherwise noted, linear systems are as-

sumed, which is not necessarily the case in practice and is certainly not true over the whole

range of amplitude values for which the Gaussian distribution is defined. Since all the results
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obtained depend on these two assumptions (and other assumptions), results may in some cases

be true only to the order of magnitude represented- However, the primary purpose, which is

that of indicating the behavior one might expect in a physical system and of demonstrating how

the behavior varies with important parameters. is served.

In Fig. 4.1, the combination of one of the message vectors, say, X 0 ' and the inter-

fering noise Y are shown resulting in the vector Z. Also, another typical message vector Xk

is shown. The points X lie approximately on a hypersphere of radius --nS, while Z lies approx-

imately on a hypersphere of radius s-JP. Here P is the total power S + N where S is the sig-

nal power and N is the interfering noise power. The NOMAC receiver cross-correlates the

received signal, vector Z, and each of the message waveforms, vectors Xk' As stated before,

this is equivalent to taking the dot product between the Z vector and each of the set of rressage

vectors aside from the constant 1/. The resulting set of dot products is designated by Wk.

Up to this point, the analysis of a NOMAC sys-

tem does not depend on how the receiver makes use of the

-outpats Wk. However, for further study it is necessary to

distinguish between the two cases: that in which the receiver

z decision circuit indicates the largest Wk as the one determin-

ing the transmitted signal; and that in which a Wk that exceeds

a previously established threshold value is the indication of
Xk 03 the transmitted signal.

For the case in which the criterion of detection

is that of maximum correlator output, it is evident that no
Fig. 4.1. Vector model error will occur if the dot product W ° exceeds all other Wk -

of messages, noise, and re- -
ceived signal (Fig. 1.2). This in turn is the case if the component of the vector X

along Z is greater than the Z-components of all other vec-

tors Xk. Since the coordinates of the vectors are independent random values, the vectors them-

selves are randomly distributed in n-space. Appendix IV illustrates this point and shows that

the Z-component of any of the K vectors not selected at the transmitter is chosen from the same

density distribution as are the coordinates of the message vectors. Therefore, the probability

density distribution of the Z-components is given by the Gaussian function

p(XI) = exp [X'] (4-3)

The prime is here used to indicate the component in the direction of Z.

The probability that any one Z-component will be less than the Z-component of X0

(hereafter designated Xz) is given by

X

P(X:cX )= f 0z p(X')dX' , (4-4)

I I-f p(X') dX' (4 -4a)

z

The probability that all K vectors not selected for transmission will have

18

CONFIDENTIAL


